首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Brain pyridoxal kinase. Mechanism of substrate addition, binding of ATP, and rotational mobility of the inhibitor pyridoxaloxime
Authors:J E Churchich  C Wu
Abstract:The inhibition kinetic patterns obtained when ATP and pyridoxal analogues are used as inhibitors of the reaction catalyzed by pyridoxal kinase are consistent with a rapid equilibrium random Bi Bi, in which binary complexes, i.e. enzyme . ATP and enzyme . pyridoxal, are formed in kinetically significant amounts. Protein fluorescence quenching was used to determine the dissociation constant (Kd = 25 microM) of ATP . Zn bound to the nucleotide site of the kinase. The binding of ATP to the kinase induces a conformational change which is transmitted to other areas of the macromolecule. Pyridoxaloxime, a competitive inhibitor of pyridoxal, was used as a probe of the pyridoxal-binding site. It binds to the kinase with Ki = 2 microM and displays a fluorescent decay time of 7.8 ns. Time emission anisotropy measurements yield a rotational correlation time for bound pyridoxaloxime of approximately 2 ns, which is considerably shorter than the rotational correlation time of the protein (phi = 38 ns). The fast rotation of pyridoxaloxime remains unaffected by the binding of ATP.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号