首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Flow-induced activation of TRPV5 and TRPV6 channels stimulates Ca2 +-activated K+ channel causing membrane hyperpolarization
Authors:Seung-Kuy Cha  Ji-Hee Kim  Chou-Long Huang
Institution:1. Department of Physiology, Institute of Lifestyle Medicine and Nuclear Receptor Research Consortium, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea;2. Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
Abstract:TRPV5 and TRPV6 channels are expressed in distal renal tubules and play important roles in the transcellular Ca2 + reabsorption in kidney. They are regulated by multiple intracellular factors including protein kinases A and C, membrane phospholipid PIP2, protons, and divalent ions Ca2 + and Mg2 +. Here, we report that fluid flow that generates shear force within the physiological range of distal tubular fluid flow activated TRPV5 and TRPV6 channels expressed in HEK cells. Flow-induced activation of channel activity was reversible and did not desensitize over 2 min. Fluid flow stimulated TRPV5 and 6-mediated Ca2 + entry and increased intracellular Ca2 + concentration. N-glycosylation-deficient TRPV5 channel was relatively insensitive to fluid flow. In cells coexpressing TRPV5 (or TRPV6) and Slo1-encoded maxi-K channels, fluid flow induced membrane hyperpolarization, which could be prevented by the maxi-K blocker iberiotoxin or TRPV5 and 6 blocker La3 +. In contrast, fluid flow did not cause membrane hyperpolarization in cells coexpressing ROMK1 and TRPV5 or 6 channel. These results reveal a new mechanism for the regulation of TRPV5 and TRPV6 channels. Activation of TRPV5 and TRPV6 by fluid flow may play a role in the regulation of flow-stimulated K+ secretion via maxi-K channels in distal renal tubules and in the mechanism of pathogenesis of thiazide-induced hypocalciuria.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号