首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Highly efficient enzymatic preparation of c-di-AMP using the diadenylate cyclase DisA from Bacillus thuringiensis
Authors:Cao Zheng  Jieping Wang  Yunchao Luo  Yang Fu  Jianmei Su  Jin He
Institution:State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
Abstract:Cyclic 3′,5′-diadenosine monophosphate (c-di-AMP) is a newly recognized bacterial nucleotide second messenger molecule. In addition, it has been shown to be a potential vaccine adjuvant. Although multiple methods are available for c-di-AMP synthesis, the yields are low and the purification procedures are laborious. Here, we report an enzymatic method for more efficient and economical c-di-AMP synthesis using a diadenylate cyclase DisA from Bacillus thuringiensis BMB 171 (btDisA). After overexpression and purification of btDisA, the enzyme-catalyzed reaction conditions were further investigated. Under the optimum conditions, in which 100 mM CHES (pH 9.5) containing 2 μM btDisA, 10 mM ATP, and 10 mM MgCl2 was incubated at 50 °C for 4 h, a high conversion rate of c-di-AMP was obtained. Coupling this process with HPLC purification and lyophilization yielded 100 mg of highly pure c-di-AMP that was harvested in white powder form from a 50 mL enzyme-catalyzed reaction system. The protocol is not only directly applicable for preparing abundant amounts of c-di-AMP for extensive biochemical and immunological use, but can also be scaled up to meet the requirements for medical applications.
Keywords:C-di-AMP  Diadenylate cyclase  DisA  Enzymatic preparation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号