首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Yeast (Saccharomyces cerevisiae) fructose-1,6-bisphosphatase. Properties of phospho and dephospho forms and of two mutants in which serine 11 has been changed by site-directed mutagenesis
Authors:F Marcus  J Rittenhouse  L Moberly  I Edelstein  E Hiller  D T Rogers
Institution:Department of Biological Chemistry and Structure, University of Health Sciences, Chicago Medical School, Illinois 60064.
Abstract:The properties of dephospho- and phosphofructose-1,6-bisphosphatase from the yeast Saccharomyces cerevisiae and of two mutant enzymes in which the phosphorylatable Ser11 had been changed by site-directed mutagenesis (Ser----Ala and Ser----Asp) were studied to clarify the role of cyclic AMP-dependent phosphorylation of yeast fructose-1,6-bisphosphatase. The mutant enzymes and wild type Ser11 fructose-1,6-bisphosphatase were overexpressed and purified to homogeneity. Phosphofructose-1,6-bisphosphatase was prepared by in vitro phosphorylation. The comparison of the properties of the above enzymes demonstrated that all four had similar maximum activity. However, the phosphoenzyme was about 3-fold more sensitive to AMP and fructose 2,6-bisphosphate inhibition than the dephosphoenzyme, suggesting that regulation operates in vivo by this mechanism, leading to decreased enzyme activity. The purified mutant enzymes Ala11 and Asp11 exhibited properties closely similar to those of dephospho- and phosphofructose-1,6-bisphosphatase, respectively. These results indicate that the functional group at residue 11 is an important factor in the regulation of fructose-1,6-bisphosphatase activity and that Ser(P) can be functionally substituted by Asp in this enzyme.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号