Abstract: | Four DNA restriction fragments, designated tyrT, pTyr2, pUC13, and Xbs1, have been used as substrates for footprinting studies with DNase I in the presence of the anthracycline antibiotic nogalamycin. With each fragment a distinct pattern of antibiotic-protected binding sites is observed, but no concensus sequence emerges from the data. All sites are located in regions of alternating purine-pyrimidine sequence, most commonly associated with the dinucleotide steps TpG (CpA) and GpT (ApC), suggesting that the preferred binding sites may contain all four nucleotides and/or that peculiarities of the dynamics of DNA conformation at alternating sequences may be critical for nogalamycin binding. Some concentration dependence of footprinting patterns is evident, in contrast to previous studies with a variety of sequence-specific ligands. Enhanced susceptibility to attack by DNase I is commonly observed at sequences flanking strong antibiotic-binding sites. Nogalamycin selectively inhibits cleavage of DNA at certain guanine-containing sequences by the G-specific photosensitized reaction with methylene blue. Comparison of these effects with its action on the G-specific reaction with dimethyl sulfate suggests that the amino sugar moiety of nogalamycin may be preferentially located in the minor helical groove at some binding sites but in the major groove at others. |