首页 | 本学科首页   官方微博 | 高级检索  
     


Streptozotocin model of diabetes mellitus in the mollusc Anodonta cygnea: functional state of the adenylyl cyclase mechanisms of action of insulin superfamily peptides and their effect on carbohydrate metabolism enzymes
Authors:L. A. Kuznetsova  S. A. Plesneva  O. V. Chistyakova  A. O. Shpakov  V. M. Bondareva  M. N. Pertseva
Affiliation:(1) Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
Abstract:In terms of development of evolutionary biomedicine using invertebrate animals as models for study of molecular grounds of various human diseases, for the first time the streptozotocin (ST) model of insulin-dependent diabetes in the mollusc Anodonta cygnea has been developed. This model is based on the following authors’ data: (1) redetection of insulin-related peptides (IRP) in mollusc tissues: (2) discovery of the adenylyl cyclase signal mechanism (ACSM) of action of insulin and other peptides of the insulin superfamily in tissues of mammals, human, and mollusc A. cygnea; (3) concept of molecular defects in hormonal signal systems as causes of endocrine diseases. Studies on the ST model have revealed in mollusc smooth muscle on the background of hyperglycemia at the 2nd, 4th, and 8th day after the ST administration a decrease of the ACSM response to activating action of insulin, IGF-1, and relaxin. These functional disturbances were the most pronounced at the 2nd day of development and rather less marked at the 4th and 8th day. Analysis of data on effect of hormonal and non-hormonal (NaF, GIDP, and forskolin) ACSM activators has shown that the causes of impair of signal-transducing function of this mechanism are (1) a hyperglycemia-induced increase of the basal AC activity and as a consequence—a decrease of the enzyme catalytic potentials in response to hormone; (2) a decrease of functions of Gs-protein and of its coupling with AC. Besides, administration of ST produced in the mollusc muscle an attenuation of regulation by insulin of carbohydrate metabolism enzyme (glucose-6-phosphate dehydrogenase, glycogensynthase). The pattern of disturbances in the studied parameters in the mollusc is very similar to that revealed by the authors in rat and human muscle tissues in type 1 diabetes.
Keywords:mollusc  streptozotocin  insulin  adenylyl cyclase mechanism  glucose-6-phisphate dehydrogenase  glycogen synthase
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号