Fusion of phospholipid vesicles reconstituted with cytochromec oxidase and mitochondrial hydrophobic protein |
| |
Authors: | Christopher Miller Efraim Racker |
| |
Affiliation: | (1) Department of Biochemistry, Molecular and Cell Biology, Cornell University, 14853 Ithaca, New York |
| |
Abstract: | Summary Reconstituted cytochrome oxidase liposomes were fused with liposomes reconstituted with mitochondrial hydrophobic protein, which acts as a membrane-bound uncoupler of cytochrome oxidase. Fusion was assayed by the loss of respiratory control of cytochrome oxidase as measured by the increased rate of ascorbate oxidation induced by hydrophobic protein when both proteins shared the same vesicles. Fusion was dependent on the presence of phosphatidylserine in the liposomes and Ca++ in the aqueous medium. Phosphatidylcholine-phosphatidylserine liposomes required higher concentrations of phosphatidylserine and Ca++ than did phosphatidylethanolamine-phosphatidylserine liposomes. Cytochrome oxidase vesicles containing high concentrations of phosphatidylserine showed little or no respiratory control, while those with lower concentrations showed high respiratory control; respiratory control could be induced by fusing cytochrome oxidase vesicles containing high phosphatidylserine with protein-free liposomes containing low phosphatidylserine concentration. If cytochrome oxidase vesicles and hydrophobic protein vesicles were prefused separately for 15 min, they lost the ability to fuse upon being subsequently mixed together. The reconstituted vesicles had diameters of about 200 Å; fusion yielded vesicles with diameters in excess of 1000 Å. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|