New Method for Monitoring the Process of Freeze Drying of Biological Materials |
| |
Authors: | Nikolay Alkeev Stanislav Averin Svetlana von Gratowski |
| |
Affiliation: | 1. Kotel’nikov Institute of Radio Engineering and Electronics (Fryazino Branch), Russian Academy of Sciences, Vvedenski sq. 1, Fryazino, Moscow Region, 141190, Russia
|
| |
Abstract: | A capacitive sensor was proposed and tested for the monitoring and control of a freeze drying process of a vaccine against the Newcastle disease of birds. The residual moisture of the vaccine was measured by the thermogravimetric method. The vaccine activity was determined by titration in chicken embryos. It was shown that, at the stages of freezing and primary drying, a capacitive sensor measured the fraction of unfrozen liquid phase in a material and allowed one to control the sublimation stage of drying in an optimal way. This prevented the foaming of the material and shortened the total drying time approximately twice. The control range at the sublimation stage of drying expanded up to −70°C. It was found at the final stage of drying that the signal of a capacitive sensor passed through a maximum value. We supposed that this maximum corresponds to the minimum of intramolecular mobility of biological macromolecules and hence to the optimal residual moisture of the material, which ensures long-term preservation of its activity. We also suppose that using the capacitive sensor at the final stage of drying allows one to more precisely detect the time when the residual moisture of dried material reaches the optimal value.KEY WORDS: biological materials, capacitive sensor, freeze drying, optimal residual moistureAt present, most biological materials containing live viruses or bacteria are exposed to lyophilization (i.e., drying from the frozen state); this ensures long-term preservation of their activity. Typically, this process consists of preliminary freezing and subsequent freeze drying. The latter process, in turn, consists of two stages: primary drying and secondary drying. During primary drying or sublimation, frozen water is removed from a biological product under vacuum and at temperatures below 0°C. At this stage, the drying rate is limited because of the foaming of a product that occurs due to its high temperature and the excess amount of liquid phase in it. The secondary drying, or final stage, begins after the end of the sublimation stage and occurs at temperatures above 0°C. The goal of the secondary drying is to bring the residual moisture of a biological product to an optimum level, which provides long-term preservation of its activity. Note that the moisture content both above and below the optimum value reduces the effective life of biological materials (1,2)To increase the shelf life of biological products, the following should be investigated: (1) the influence of the composition of the dried biological product and the residual moisture on the change in its activity over the time (3); (2) it is needed to optimize the sublimation drying process for different types of biological products (4). For the investigation of the of the state of water in the dried biologic drugs and the influence of the humidity of the biological on the change in their activity during shelf life, different physical methods are used such as neutron scattering (5), nuclear magnetic resonance (NMR) (6,7), Raman spectroscopy (8), infrared spectroscopy, differential scanning calorimetry, thermal activity monitor (9), and gravimetric sorption analysis (10). The investigations using these methods allow to find an optimum composition of a protective medium for biologics and to determine its optimal residual moisture.At all stages of the freeze drying, the parameters of the material and the parameters of the drying process (temperature of a material, the shelf temperature, the condenser temperature, the pressure in the sublimation chamber, etc.) are also monitored. According to these data, the mode of the process is selected to conduct him for the minimum time and get the best product quality (11). Usually during the drying process, the temperature is measured in several vials with biologic located on different shelves. The sharp increase of the temperature indicates the end of primary drying and the beginning of the secondary drying. The finish of the sublimation stage is revealed by a sharp decrease of the partial pressure of water vapor in the sublimation chamber (12,13). Note that the partial pressure of water vapor in the sublimation chamber does not characterize the state of the biological product to be dried and it is an indirect parameter. For monitoring and controlling the process of freeze drying, it is important to use the own properties of biological materials. In (14), a resistivity sensor placed in a frozen biological material was proposed to control the primary stage of freeze drying. A disadvantage of this method is that one cannot establish an unambiguous relationship between the amount of liquid phase in the frozen material and the value of resistivity: the resistance of the sensor depends not only on the amount of liquid phase but also on the concentration of dissolved salts. Another disadvantage of the resistivity sensor is that, when the temperature decreases, the resistivity of the material sharply increases to values that are difficult to measure, which makes impossible the control of the sublimation stage with this sensor.In (15,16), the interesting methods for determining the moisture of biological materials during secondary drying were proposed. These methods are based on the measurement of the partial pressure of water vapors in the sublimation chamber by NIR spectroscopy or Raman spectroscopy. Note that this method is indirect and requires laborious calibration to establish a correspondence between the current moisture of the biological material in vials and the pressure of water vapor in the sublimation chamber.It should be noted that one has to carry out a series of long-term experiments to find the optimal residual moisture of a biological product. These experiments result in the lifetimes of biological samples with various residual moistures. As the optimal residual moisture of a biological product, one takes the value that provides the longest term preservation of its activity.However, finding the optimal conditions of freeze drying has traditionally been a process of trial and error and required several experimental runs (17). Note also that the freeze drying process is time-consuming and labor intensive.A promising method for the investigation of the properties of biological materials is dielcometry (18,19). This method is relatively simple and very informative since it gives information about the structure of biological macromolecules and the state and role of water in the biological material, etc. This method was used in (20–22) for monitoring biological materials at the primary stage of freeze drying. In (20), authors had found an anomalous low-frequency dispersion of the dielectric permittivity in the biological under study and explain this phenomenon by the proton transfer among water molecules, connected by hydrogen bonds The dielectric relaxation time turned out to be sensitive to the loss of moisture content in the product, and the authors suggested to use of this phenomenon to determine the end point of the freeze drying process. The authors mounted the electrodes of the capacitive sensor on the outer surface of vials with the material to be dried. This approach allows monitoring the sublimation rate and determining the end of the primary stage of freeze drying. Unfortunately, the sensitivity of the capacitive sensor of this design is not enough for the reliable monitoring of the stage of secondary drying.In this paper, a new design of a capacitive sensor and measurement technique are proposed that enable monitoring all stages of the drying process: the freezing stage, the sublimation stage, and the final stage. During freezing and the sublimation stages, the sensor monitors the amount of liquid phase in the frozen material. This allows an optimal control during the whole sublimation stage which prevents the foaming of the material and significantly reduces the total drying time. The sensor also fixes the end of the sublimation stage and the beginning of the final stage of drying. At this stage, the high sensitivity of the measuring system enables one to discover that there is a certain time interval when the signal of the capacitive sensor passes through a maximum. We believe that this maximum corresponds to the minimum of the molecular mobility of biological macromolecules and the optimal residual moisture of the material to be dried. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|