首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evaluation of Three Electron-Donor Permeable Reactive Barrier Materials for Enhanced Reductive Dechlorination of Trichloroethene
Authors:Elizabeth S Semkiw  Michael J Dybas  Michael J Barcelona
Institution:1. Department of Chemistry , Western Michigan University , Kalamazoo, Michigan, USA;2. Center for Microbial Ecology , Michigan State University , Lansing, Michigan, USA
Abstract:Understanding the fate of complex electron-donor materials is important for developing efficient biostimulation strategies to treat ground water contamination by chlorinated ethenes (CEs). The fermentation product distributions and H2 production of common permeable reactive barrier (PRB) carbon substrates (dairy whey, sodium lactate syrup, and Hydrogen Release Compound HRC]) were monitored as measures of substrate efficiency in aquifer microcosms spiked with trichloroethene (TCE). In long-term experiments, the fermentation of PRB substrates to slow-degrading organic acids maintained low H2 partial pressures (≤ 10?3.5) that, as previous studies suggest, may give competitive advantage to dechlorinators over hydrogenotrophic methanogens. Whey-amended and lactate-amended microcosms exhibited faster complete dechlorination and, according to organic acid carbon flow, higher rates of fermentation to acetate. In HRC-amended microcosms, propionate appeared to serve as a carbon sink that prolonged dechlorination. Upon complete dechlorination, whey microcosms contained the highest percentage of organic acid carbon. Native Dehalococcoides populations increased by 3 orders of magnitude (per g sediment) in whey-amended microcosms. Whey's efficiency improved in microcosms prepared with aquifer sediment and water from within a downgradient whey PRB. Results suggested whey loading values of 0.2 kg/m3 may be appropriate under sufficiently reducing conditions to efficiently stimulate hydrogenotrophic and potentially actetotrophic dechlorinating populations. Renewal of whey PRBs may, however, be required. Implications for further long-term study of cost-efficiencies are discussed.
Keywords:biobarrier  bioremediation  chloroethenes  HRC  lactate  PRB  reductive dechlorination  remediation  whey
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号