首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fascicle switching generates a chiasmal neuroarchitecture in the embryonic central body of the grasshopper Schistocerca gregaria
Authors:Boyan G S  Williams J L D  Herbert Z
Institution:1. Research Computing & Instrumentation, University of New Hampshire, Rudman Hall, 46 College Road, Durham, NH 03824, USA;2. School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia;3. Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia;4. Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka;5. Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany;1. Central Facility for Electron Microscopy, University of Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany;2. Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany;3. Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic;4. Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, 21502, Geesthacht, Germany;1. Laboratory of Veterinary Hygiene, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan;2. Departamento Académico de Microbiología Médica, Facultad de Medicina Humana, Universidad Nacional Mayor de San Marcos, Lima, Peru;3. Laboratorio de Entomología, Instituto Nacional de Salud, Lima, Peru;4. Programa de Oncocercosis, Servicio Nacional de Erradicacion de la Malaria (SNEM), Ministerio de Salud Publica, Ecuador;5. Department of Microbiology, Faculty of Life Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan;6. Department of Parasitology, Kochi Medical School, Kochi University, Kochi, Japan;7. Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan;8. Prometeo, Secretaria Nacional de Educacion Superior, Ciencia, Tecnologia e Innovacion (SENESCYT), Ecuador;9. Centro de Biomedicina, Universidad Central del Ecuador, Quito, Ecuador;1. Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark;2. Department of Medicine V (Hepatology/Gastroenterology), Aarhus University Hospital, Aarhus, Denmark;1. INSERM UMR 1094, Institute of Neuroepidemiology and Tropical Neurology, and Faculties of Medicine and Pharmacy, 2 rue du Docteur Raymond Marcland, 87025 Limoges, France;2. Laboratory of General Biology, Department of Biology and Animal Physiology, Faculty of Science, PO Box 812, Yaoundé, Cameroon;3. Animal Molecular Genetics Unit (UGMA), UMR INRA 1061, Faculty of Science and Technology, 123 Cours Albert Thomas, 87000 Limoges, France;4. Laboratory of Malaria Research (OCEAC), PO Box 288, Yaoundé, Cameroon;5. University Hospital Centre, Department of Parasitology, PO Box 3266, Yaoundé, Cameroon;1. Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo (IBUSP), São Paulo, SP, Brazil;2. Integrative Research Center, Field Museum of Natural History (FMNH), Chicago, IL, USA;3. Landcare Research, New Zealand Arthropod Collection (NZAC), Auckland, AK, New Zealand
Abstract:The central body is a prominent neuropilar structure in the midbrain of the grasshopper and is characterized by a fan-shaped array of fiber columns, which are part of a chiasmal system linking anterior and posterior commissures. These columns are established during embryogenesis and comprise axons from cell clusters in the pars intercerebralis, which project to the central body via the so-called w, x, y, z tracts. Up to mid-embryogenesis the primary axon scaffold in both the brain and ventral nerve cord comprises a simple orthogonal arrangement of commissural and longitudinal fiber pathways. No chiasmata are present and this pattern is maintained during subsequent development of the ventral nerve cord. In the midbrain, individual axons entering the commissural system from each of the w, x, y, z tracts after mid-embryogenesis (55%) are seen to systematically de-fasciculate from an anterior commissure and re-fasciculate with another more posterior commissure en route across the midline, a feature we call "fascicle switching". Since the w, x, y, z tracts are bilaterally symmetrical, fascicle switching generates chiasmata at stereotypic locations across the midbrain. Choice points for leaving and entering fascicles mark the anterior and posterior positions of each future column. As the midbrain neuropil expands, the anterior and posterior groups of commissures condense, so that the chiasmata spanning the widening gap between them become progressively more orthogonally oriented. A columnar neuroarchitecture resembling that of the adult central body is already apparent at 70% of embryogenesis.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号