首页 | 本学科首页   官方微博 | 高级检索  
     


A Novel Wick-Like Paper-Based Microfluidic Device for 3D Cell Culture and Anti-Cancer Drugs Screening
Authors:Shu-xia Fu  Peng Zuo  Bang-Ce Ye
Affiliation:Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237 China
Abstract:Paper is increasingly recognized as a portable substrate for cell culture, due to its low-cost, flexible, and special porous property, which provides a native cellular 3D microenvironment. Therefore, paper-based microfluidics has been developed for cell culture and biomedical analysis. However, the inability of continuous medium supply limits the wide application of paper devices for cell culture. Herein, a paper-based microfluidic device is developed with novel folded paper strips as wick-like structure, which is used for medium self-driven perfusion. The paper with patterns of hydrophilic channel, culture areas, and hydrophobic barrier could be easily fabricated through wax-printing. After printing, the hydrophilic paper strip at the periphery of the lower layer is then folded at 90° and extended into the medium container for continuous automatic supply of medium to the cell culture area. Tumor cells cultured in the paper device are tested for anti-cancer drug screening. Visualized cell viability and chemical sensitivity testing can be achieved by colorimetry combined with simple smartphone imaging, effectively reducing precision instrument dependence. The wick paper-based microfluidic device for cell culture endows the method the advantages of lower cost, ease-of-operation, miniaturization, and shows a great potential for large-scale cell culture, antibody drug production, and efficient screening.
Keywords:3D cell culture  colorimetric analysis  drug screening  paper-based microfluidic
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号