首页 | 本学科首页   官方微博 | 高级检索  
     


Larvicidal potential of cell wall degrading enzymes from Trichoderma asperellum against Aedes aegypti (Diptera: Culicidae)
Authors:Alexsander Augusto da Silveira  Jackeline Santana Paula Andrade  Ana Carla Peixoto Guissoni  Adeliane Castro da Costa  Arthur de Carvalho e Silva  Heloisa Garcia da Silva  Pedro Brito  Guilherme Rocha Lino de Souza  Kátia Flávia Fernandes
Affiliation:1. Laboratório de Química de Polímeros (LQP) – ICB2, Universidade Federal de Goiás, Goiânia, Brazil;2. Laboratório de Química de Polímeros (LQP) – ICB2, Universidade Federal de Goiás, Goiânia, Brazil

Faculdade Estácio de Sá de Goiás – FESGO, Goiânia, Brazil

Contribution: Methodology, Validation;3. Faculdade Estácio de Sá de Goiás – FESGO, Goiânia, Brazil

Contribution: Data curation, Methodology, Validation;4. Faculdade Estácio de Sá de Goiás – FESGO, Goiânia, Brazil

Contribution: Data curation, Formal analysis, Validation, Visualization, Writing - review & editing;5. DBBM- ICB2, Universidade Federal de Goiás, Goiânia, Brazil

Contribution: Methodology, Validation;6. IPTSP - Universidade Federal de Goiás, Goiânia, Brazil

Contribution: Methodology, Supervision, Validation;7. ICB4/Universidade Federal de Goiás, Goiânia, Brazil

Contribution: Conceptualization, Data curation, Formal analysis, Methodology;8. Laboratório de Química de Polímeros (LQP) – ICB2, Universidade Federal de Goiás, Goiânia, Brazil

Contribution: Conceptualization, Data curation, Formal analysis, Funding acquisition, ​Investigation, Methodology, Supervision, Validation, Visualization, Writing - original draft

Abstract:Aedes aegypti is a mosquito vector of arboviruses such as dengue, chikungunya, zika and yellow fever that cause important public health diseases. The incidence and gravity of these diseases justifies the search for effective measures to reduce the presence of this vector in the environment. Bioinsecticides are an effective alternative method for insect control, with added ecological benefits such as biodegradability. The current study demonstrates that a chitinolytic enzyme complex produced by the fungus Trichoderma asperellum can disrupt cuticle formation in the L3 larvae phase of A. aegypti, suggesting such biolarvicidal action could be used for mosquito control. T. asperellum was exposed to chitin from different sources. This induction of cell wall degrading enzymes, including chitinase, N-acetylglucosaminidase and β-1,3-glucanase. Groups of 20 L3 larvae of A. aegypti were exposed to varying concentrations of chitinolytic enzymes induced with commercial chitin (CWDE) and larvae cell wall degrading enzymes (L-CWDE). After 72 h of exposure to the CWDE, 100% of larvae were killed. The same percent mortality was observed after 48 h of exposure to L-CWDE at half the CWDE enzyme mixture concentration. Exoskeleton deterioration was further observed by scanning and electron microscopy. Our findings indicate that L-CWDE produced by T. asperellum reflect chitinolytic enzymes with greater specificity for L3 larval biomolecules. This specificity is characterized by the high percentage of mortality compared with CWDE treatments and also by abrupt changes in patterns of the cellular structures visualized by scanning and transmission electron microscopy. These mixtures of chitinolytic enzymes could be candidates, as adjuvant or synergistic molecules, to replace conventional chemical insecticides currently in use.
Keywords:Aedes aegypti  chitinolytic enzymes  larvicidal activity  Trichoderma asperellum
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号