首页 | 本学科首页   官方微博 | 高级检索  
   检索      


PVA based nanofiber containing cellulose modified with graphitic carbon nitride/nettles/trachyspermum accelerates wound healing
Authors:Danial Nemati  Mohsen Ashjari  Hamid Rashedi  Fatemeh Yazdian  Mona Navaei-Nigjeh
Institution:1. Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran;2. School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran;3. Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran;4. Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran
Abstract:Today, bacterial cellulose has received a great deal of attention for its medical applications due to its unique structural properties such as high porosity, good fluid uptake, good strength, and biocompatibility. This study aimed to fabricate and study bacterial cellulose/graphitic carbon nitride/nettles/trachyspermum nanocomposite by immersion and PVA/BC/g-C3N4/nettles/trachyspermum nanofiber by electrospinning method as a wound dressing. The g-C3N4 and g-C3N4 solution were synthesized and then were characterized using Fourier transform infrared, X-ray diffraction, Zeta Potential, and scanning electronic microscope analyzes. Also, the antibacterial properties of the synthesized materials were proved by gram-positive and gram-negative bacteria using the minimum inhibitory concentration method. Besides, the toxicity, migration, and cell proliferation results of the synthesized materials on NIH 3T3 fibroblasts were evaluated using MTT and scratch assays and showed that the BC/PVA/g-C3N4/nettles/trachyspermum composite not only had no toxic effect on cells but also contributed to cell survival, cell migration, and proliferation has done. To evaluate the mechanical properties, a tensile strength test was performed on PVA/BC/g-C3N4/nettles/trachyspermum nanofibers, and the results showed good strength of the nanocomposite. In addition, in vivo assay, the produced nanofibers were used to evaluate wound healing, and the results showed that these nanofibers were able to accelerate the wound healing process so that after 14 days, the wound healing percentage showed 95%. Therefore, this study shows that PVA/BC/g-C3N4/nettles/trachyspermum nanofibers effectively inhibit bacterial growth and accelerate wound healing.
Keywords:bacterial cellulose  cytotoxicity  graphitic carbon nitride  wound dressing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号