首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The optimization conditions of establishing an H9c2 cardiomyocyte hypoxia/reoxygenation injury model based on an AnaeroPack System
Authors:Jingyi Wen  Dan Wang  Lichun Cheng  Di Wu  Lulu Qiu  Miao Li  Yu Xie  Si Wu  Yan Jiang  Hansheng Bai  Bing Xu  Huiyi Lv
Institution:1. Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China

College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China;2. Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China

Abstract:Ischemia–reperfusion (I/R) injury is a major cause of cardiomyocyte apoptosis after vascular recanalization, which was mimicked by a hypoxia/reoxygenation (H/R) injury model of cardiomyocytes in vitro. In this study, we explored an optimal H/R duration procedure using the AnaeroPack System. To study the H/R procedure, cardiomyocytes were exposed to the AnaeroPack System with sugar and serum-free medium, followed by reoxygenation under normal conditions. Cell injury was detected through lactate dehydrogenase (LDH) and cardiac troponin (c-Tn) release, morphological changes, cell apoptosis, and expression of apoptosis-related proteins. The results showed that the damage to H9c2 cells increased with prolonged hypoxia time, as demonstrated by increased apoptosis rate, LDH and c-Tn release, HIF-1α expression, as well as decreased expression of Bcl-2. Furthermore, hypoxia for 10 h and reoxygenation for 6 h exhibited the highest apoptosis rate and damage and cytokine release; in addition, cells were deformed, small, and visibly round. After 12 h of hypoxia, the majority of the cells were dead. Taken together, this study showed that subjecting H9c2 cells to the AnaeroPack System for 10 h and reoxygenation for 6 h can achieve a practicable and repeatable H/R injury model.
Keywords:AnaeroPack System  apoptosis  cardiomyocytes  hypoxia/reoxygenation injury model  ischemia–reperfusion injury
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号