首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of copper and zinc on growth,morphology, and metabolism of Asterionella japonica (Cleve) 1
Authors:Nicholas S Fisher  Gary J Jones  David M Nelson
Institution:Marine Science Laboratories, Ministry for Conservation, P.O. Box 114, Queenscliff, Victoria 3225, Australia;School of Oceanography, Oregon State University, Corvallis, OK 97331, U.S.A.
Abstract:When exposed to elevated levels of copper or zinc, the diatom Asterionella japonica (Cleve) showed a reduced cell division rate and a marked increase in cell size. Metal-treated cells had greater cell volumes, dry weights, carbon, nitrogen, chlorophyll, and DNA contents, all in approximately the same proportion as control cells. Two protoplasts often appeared to be contained within one frustule. Metal-treated cells photosynthesized at near-normal rates on a per chlorophyll basis and above normal rates on a per cell basis. Excretion of photosynthetically fixed carbon was depressed by metal treatment; 10–22% of fixed carbon was excreted in control cells and typically less than 1% in treated cells. Thus, metal-treated cells showed an uncoupling of photosynthesis from cell division and continued to enlarge when fixed carbon could not be excreted or utilized in cell division.Uptake of sulphate and silicic acid proceeded at slower rates than other processes (e.g., nitrogen uptake or photosynthesis) in copper-treated cells. Free amino acids in copper-treated cells totalled ≈ 10% of control cell levels, with greatest proportional declines in methionine, cysteine, aspartic acid, valine, and isoleucine. Copper-treated cells resuspended in fresh medium shrank to normal size when exposed to methionine (which they accumulated), although cell division rates did not return to normal. These cells excreted 2–3 times as much fixed carbon as comparable EDTA-treated or untreated cells, neither of which decreased in size. Copper-treated cells appeared indistinguishable from silicon-limited cells (i.e., cells not dividing for lack of silicon) in a copper-free medium. Cells treated with the sulfhydryl binder PCMB divided at reduced rates and also swelled in a manner comparable to copper-treated cells. The results suggest that toxic metals may bind to sulfhydryl groups on cell membranes, impairing normal membrane function and reducing silicic acid uptake and amino-acid synthesis, thereby resulting in depressed cell division rates.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号