首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Substrate specificity of aspartate transcarbamylase. Interaction of the enzyme with analogs of aspartate and succinate
Authors:J Foote  A M Lauritzen  W N Lipscomb
Abstract:The ability of aspartate transcarbamylase from Escherichia coli to catalyze carbamylation of amino acids other than the natural substrate, L-aspartate, was examined. Cysteine, cysteate, cysteinesulfinate, and 3-nitroalanine showed kcat values at pH 7 of 0.16, 0.58, 5.2, and 62 s-1, respectively, while kcat with aspartate was 320 s-1. In a parallel study, competitive inhibition constants of 3-nitropropionate, 3-mercaptopropionate, 3-sulfopropionate, and 3-sulfinopropionate were found to be high, about 0.1 M, compared with that of succinate, 0.56 mM. Although cysteinesulfinate had low activity as a substrate, the pH dependences of kcat and kcat/Km in H2O and D2O observed with the compound closely paralleled those of aspartate. The results of these studies suggest that substrate specificity and reactivity are achieved in part by a strong, highly specific interaction of one or more active site residues with the beta-carboxylate of L-aspartate. Unlike the sigmoidal kinetics found with aspartate, saturation of native aspartate transcarbamylase by cysteine sulfinate showed a lack of cooperativity, even under conditions of activation of the reaction by ATP and inhibition by CTP. The cysteinesulfinate reaction was increased 9-fold by the bisubstrate analog N-phosphonacetyl-L-aspartate. These results were interpreted in terms of an inability of cysteinesulfinate to cause the allosteric conformational change promoted by aspartate.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号