首页 | 本学科首页   官方微博 | 高级检索  
     


Glucose Modification of Human Serum Albumin: A Structural Study
Authors:Peter J. Coussons  Juliette Jacoby  Alan McKay  Sharon M. Kelly  Nicholas C. Price  James V. Hunt
Affiliation:

a University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK

b Department of Biological & Molecular Sciences, University of Stirling, Stirling, Scotland FK9 4LA, UK

Abstract:Structural changes associated with the exposure of human serum albumin (HSA) to glucose with or without the presence of Cu (II) have been characterized using a bank of methods for structural analysis including circular dichroism (CD), amino acid analysis (AAA), fluorescence measurements, SDS-PAGE, and boronate binding (which is a measure of Amadori product formation). We show that in the short-term (10 d) incubation mixtures, HSA is resistant to Cu (II)-mediated oxidative damage and that the early products of glycation of HSA had minimal effects on the folded structure. Amino acid analysis showed that there was no formation of advanced glycation endproducts (AGE), which can be measured by loss of lysine. This remained the case in longer term incubation of HSA (56 d) in the hyperglycemic concentration range (5–25 mM glucose) despite increased levels of Amadori product (60% boronate binding) and the formation of glycophore (Excitation 350, Emission 425). At high, nonphysiological concentrations (100 mM and 500 mM) of glucose, glycophore formation increased and 3 and 11 mol Lysine-glucose adduct/mol HSA were converted to AGE, respectively. This was accompanied by increased damage to tryptophan and protein-protein crosslinking but only minor tertiary structural change. In the presence of Cu (II), however, AGE formation was accompanied by extensive damage to histidine and tryptophan side chains, main chain fragmentation, and loss of both secondary and tertiary structure. Thus, changes in structure appear to be the result of oxidation as opposed to glycation, per se. © 1997 Elsevier Science Inc.
Keywords:Albumin   Glucose   Oxidation   Structure   Circular dichroism   Amino acid analysis   Free radicals
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号