首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Generation of inhibitor-sensitive protein tyrosine phosphatases via active-site mutations
Authors:Bishop Anthony C  Zhang Xin-Yu  Lone Anna Mari
Institution:Department of Chemistry, Amherst College, Amherst, MA 01002, USA. acbishop@amherst.edu
Abstract:Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of phosphotyrosine, a central control element in mammalian signal transduction. Small-molecule inhibitors that are specific for each cellular PTP would be valuable tools in dissecting phosphorylation networks and for validating PTPs as therapeutic targets. However, the common architecture of PTP active sites impedes the discovery of selective PTP inhibitors. Our laboratory has recently used enzyme/inhibitor-interface engineering to generate selective PTP inhibitors. The crux of the strategy resides in the design of "inhibitor-sensitized" PTPs through protein engineering of a novel binding pocket in the target PTP. "Allele-specific" inhibitors that selectively target the sensitized PTP can be synthesized by modifying broad-specificity inhibitors with bulky chemical groups that are incompatible with wild-type PTP active sites; alternatively, specific inhibitors that serendipitously recognize the sensitized PTP's non-natural pocket may be discovered from panels of "non-rationally" designed compounds. In this review, we describe the current state of the PTP-sensitization strategy, with emphases on the methodology of identifying PTP-sensitizing mutations and synthesizing the compounds that have been found to target PTPs in an allele-specific manner. Moreover, we discuss the scope of PTP sensitization in regard to the potential application of the approach across the family of classical PTPs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号