首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Topological effects on the electrophoretic mobility of rigid rodlike DNA in polyacrylamide gels
Authors:Heuer Daniel M  Saha Sourav  Archer Lynden A
Institution:Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.
Abstract:The electrophoretic migration of rigid rodlike DNA structures with well defined topologies has been investigated in polyacrylamide (PA) hydrogels prepared by copolymerization of acrylamide and N, N'-methylenebisacrylamide. Previous studies have reported structural and dynamic characteristics of linear and branched DNA during electrophoresis in PA gels using a variety of experimental parameters. However, a thorough investigation aimed at establishing specific relationships between topological features of rigid rodlike DNA structures and their electrophoretic behavior is still needed. In order to study these topological effects on mobility, an intensive examination of the electrophoretic mobility of small linear and starlike DNA was performed. A series of model DNA structures with well-defined branched topologies were synthesized with varying molecular parameters, such as number of arms surrounding the branch point and arm length. The electrophoretic mobility of these structures was then contrasted with a series of data obtained using linear DNA of comparable molecular size. When large DNA stars (M >/= 60 bp) were compared with linear DNA of identical molecular weight, the Ferguson plots were quite different. However, small DNA stars (24-32 bp) and linear analogues had identical Ferguson plots. This indicates that a different motional mode or greater interaction with the gel exists for the larger DNA stars. When the total molecular weight of the DNA stars was held constant and the number of arms varied, the Ferguson plots for all the stars were identical. Additionally, a critical pore size was reached when the ratio of linear DNA mobility to star DNA mobility increased dramatically. Thus, while the incorporation of a single branch point can produce a large reduction in mobility, above a critical molecular size, the incorporation of additional branch points does not appear to provide further reduction in mobility. This finding is consistent with the transport properties of large synthetic star polymers, where a large reduction in their diffusion coefficient is observed when a single branch is added. When additional arms are incorporated, large synthetic stars do not display an appreciable further reduction in diffusion coefficient. The effect of arm length on mobility for rigid rod DNA stars was also studied. For four-arm DNA stars, the mobility was found to scale as an exponential function of the arm length. Finally, a recently proposed phenomenological model was used to successfully fit the mobility data for linear rigid rod DNA at various concentrations of PA.
Keywords:branched DNA  star polymers  DNA topology  rigid rod  gel electrophoresis
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号