首页 | 本学科首页   官方微博 | 高级检索  
     


Role of peroxisomal oxidation in the conversion of arachidonic acid to eicosatrienoic acid in human skin fibroblasts.
Authors:A A Spector  D E Willard  T L Kaduce  R L Widstrom
Affiliation:Department of Biochemistry, University of Iowa, Iowa City 52242, USA. arthur-spector@uiowa.edu
Abstract:Human skin fibroblasts converted [5,6,8,9,11,12,14,15-3H]arachidonic acid ([3H]20:4) to eicosatrienoic acid (20:3), but appreciable amounts of radiolabeled 20:3 were not detected in corresponding incubations with [1-(14)C]20:4. This indicates that the main pathway for synthesizing 20:3 from arachidonic acid in the fibroblast involves oxidative removal of the carboxyl group of arachidonic acid. Fibroblasts deficient in long-chain acyl coenzyme A dehydrogenase (LCAD) converted [3H]20:4 to [3H]20:3. However, Zellweger fibroblasts that are deficient in peroxisomal fatty acid oxidation did not, indicating that the oxidative removal of the carboxyl group occurs in the peroxisomes. [3H]Hexadecatrienoic acid (16:3) was the main product that accumulated when [3H]20:4 was incubated with normal, LCAD deficient, and very long-chain acyl coenzyme A dehydrogenase (VLCAD) deficient fibroblasts, but Zellweger fibroblasts did not form this product. Normal fibroblasts converted [3H]16:3 to radiolabeled 20:3 and arachidonic acid. These findings suggest that some of the 16:3 produced from arachidonic acid by peroxisomal beta-oxidation can be recycled and that this recycling process constitutes a novel pathway for the conversion of arachidonic acid to 20:3 in human fibroblasts.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号