首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dimerization of nitric oxide-sensitive guanylyl cyclase requires the alpha 1 N terminus
Authors:Wagner Corina  Russwurm Michael  Jäger Ronald  Friebe Andreas  Koesling Doris
Institution:Institut für Pharmakologie und Toxikologie, Medizinische Fakult?t, MA N1, Ruhr-Universit?t-Bochum, 44780 Bochum, Germany.
Abstract:The enzyme nitric oxide-sensitive guanylyl cyclase is an obligate heterodimer consisting of an alpha and a beta subunit. Whereas the C-terminal parts of the subunits have been shown to be sufficient for catalysis, regulation was assigned to the N termini. The central domains have been postulated to be responsible for the formation of alphabeta heterodimers. Here, we have analyzed dimerization by precipitation of various N- and C-terminally truncated alpha(1) mutants with beta(1) wild type or deletion mutants thereof after coexpression in the baculovirus/Sf9 system. In contrast to the current hypothesis, our analysis revealed that an N-terminal region of the alpha(1) subunit (amino acids 61-128) is mandatory for quantitative dimerization. The central domain (amino acids 367-462) contributes but is not sufficient to mediate robust alphabeta interaction. Wild type-like binding of the identified minimum dimerization region of alpha(1) (amino acids 61-462) requires the N-terminal and central region of beta(1) (amino acids 1-385). Furthermore, we observed an unequal stability of the alpha(1) and beta(1) subunit. Whereas beta(1) forms heme containing homodimers and is stable, alpha(1) appears to be prone to misfolding and degradation when heterodimerization is impaired by deletion of important sequences.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号