首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Allozyme Polymorphism of Swiss Stone Pine <Emphasis Type="Italic">Pinus cembra</Emphasis> L. in Mountain Populations of the Alps and the Eastern Carpathians
Authors:M M Belokon  Yu S Belokon  D V Politov  Yu P Altukhov
Institution:(1) Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
Abstract:Swiss stone pine Pinus cembra L. is a species with fragmented range, occurring in the Alpine-East Carpathian mountain system. Seeds of P. cembra are dispersed by nutcrackers, which offers potential possibilities for gene exchange among populations. Using isozyme analysis, we have examined five samples from two parts of the Swiss stone pine range: the Alps (Switzerland and Austria) and the Carpathians (two samples from the northern macroslope of the Gorgany Ridge, Eastern Carpathians, Ivano-Frankivs'ka oblast and one sample from Zakarpats'ka oblast of Ukraine). The allele frequencies of 30 isozyme loci, coding for enzymes ADH, FDH, FEST, GDH, GOT, IDH, LAP, MNR, MDH, PEPCA, 6-PGD, PGI, PGM, SDH, SKDH, SOD, were analyzed using cluster analysis and Principal Component Analysis. Two clusters, corresponding to the isolated Alpine and Carpathian parts of the range, were found. The main contribution to these differences were made by loci Adh-1, Adh-2, Fest-2, Lap-3, Mdh-4, and Sod-4. The interpopulation differentiation proved to be somewhat higher than that typical for pines (FST = 7.4%), but within the limits characteristic for taxonomically close species. Thus, isolation of the populations did not lead to their marked differentiation, which may be explained by gene flow and balancing selection, which equalizes gene frequencies across the fragmented species area. Interlocus (FST heterogeneity (from 0.003 to 0.173) suggests adaptive significance of some of the allozyme polymorphisms or linkage of some loci with adaptive genes. The Carpathian populations were shown to have higher gene diversity than the Alpine ones (expected heterozygosities 0.095–0.114 and 0.060–0.080, respectively). A deficiency of heterozygotes (as compared to the Hardy-Weinberg proportions), observed in the embryo sample, was probably explained by inbreeding. The reduction in the area of Carpathian pine forests in Holocene, caused by the global climatic changes and the anthropogenic impact, is hazardous for the gene pool of the species. The maintenance of genetic uniqueness of both Carpathian populations of P. cembra in general, and individual stands in particular, requires special measures for protection of Swiss stone pine in the Eastern Carpathians.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号