首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetic detoxification of an aroA Salmonella enterica serovar Typhimurium vaccine strain does not compromise protection against virulent Salmonella and enhances the immune responses towards a protective malarial antigen
Authors:McKelvie Nicola D  Khan Shahid A  Karavolos Michail H  Bulmer David M  Lee Jeong Jin  DeMarco Raquel  Maskell Duncan J  Zavala Fidel  Hormaeche Carlos E  Khan C M Anjam
Institution:Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle Upon Tyne, UK.
Abstract:Live Salmonella vaccines are limited in use by the inherent toxicity of the lipopolysaccharide. The waaN gene encodes a myristyl transferase required for the secondary acylation of lipid A in lipopolysaccharide. A waaN mutant exhibits reduced induction of the inflammatory cytokines associated with lipopolysaccharide toxicity. Here the characteristics of a Salmonella enterica serovar Typhimurium aroA waaN mutant (SK100) in vitro and in vivo compared with its parent aroA strain (SL3261) were described. Phenotypic analysis of purified lipopolysaccharide obtained from SK100 confirmed that the physical and biological activities of the lipopolysaccharide had been altered. Nevertheless both strains had similar patterns of colonization and persistence in mice and significantly the aroA waaN mutant was equally as effective as the parent at protecting against challenge with wild-type S. Typhimurium. Furthermore, a SK100 strain was constructed expressing both tetanus toxin fragment C and the circumsporozoite protein of a malaria parasite. In marked contrast to its isogenic parent, the new attenuated strain induces significantly enhanced immune responses against the circumsporozoite protein. The waaN mutation enhances the ability of this strain to elicit immune responses towards guest antigens. This study provides important insights into the development of safe and effective multivalent Salmonella vaccines.
Keywords:Salmonella            lipopolysaccharide              waaN                        aroA            multivalent vaccine
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号