首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Variola virus F1L is a Bcl-2-like protein that unlike its vaccinia virus counterpart inhibits apoptosis independent of Bim
Authors:B Marshall  H Puthalakath  S Caria  S Chugh  M Doerflinger  P M Colman  M Kvansakul
Institution:1Department of Biochemistry, La Trobe University, Kingsbury Drive, Melbourne, 3086 Victoria, Australia;2La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Melbourne, 3086 Victoria, Australia;3Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 Victoria, Australia;4Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
Abstract:Subversion of host cell apoptosis is an important survival strategy for viruses to ensure their own proliferation and survival. Certain viruses express proteins homologous in sequence, structure and function to mammalian pro-survival B-cell lymphoma 2 (Bcl-2) proteins, which prevent rapid clearance of infected host cells. In vaccinia virus (VV), the virulence factor F1L was shown to be a potent inhibitor of apoptosis that functions primarily be engaging pro-apoptotic Bim. Variola virus (VAR), the causative agent of smallpox, harbors a homolog of F1L of unknown function. We show that VAR F1L is a potent inhibitor of apoptosis, and unlike all other characterized anti-apoptotic Bcl-2 family members lacks affinity for the Bim Bcl-2 homology 3 (BH3) domain. Instead, VAR F1L engages Bid BH3 as well as Bak and Bax BH3 domains. Unlike its VV homolog, variola F1L only protects against Bax-mediated apoptosis in cellular assays. Crystal structures of variola F1L bound to Bid and Bak BH3 domains reveal that variola F1L forms a domain-swapped Bcl-2 fold, which accommodates Bid and Bak BH3 in the canonical Bcl-2-binding groove, in a manner similar to VV F1L. Despite the observed conservation of structure and sequence, variola F1L inhibits apoptosis using a startlingly different mechanism compared with its VV counterpart. Our results suggest that unlike during VV infection, Bim neutralization may not be required during VAR infection. As molecular determinants for the human-specific tropism of VAR remain essentially unknown, identification of a different mechanism of action and utilization of host factors used by a VAR virulence factor compared with its VV homolog suggest that studying VAR directly may be essential to understand its unique tropism.Variola virus (VAR), the causative agent of smallpox, is a member of the poxvirus family and belongs to the orthopoxviridae. Despite its successful eradication nearly 30 years ago, VAR remains an ongoing concern because of its potential use as a bioterrorism agent.1 The threat of intentional use of VAR coupled with the absence of an FDA-approved drug for the prevention or treatment of smallpox infection is cause for considerable interest in the development of small-molecule therapeutics against VAR. Current strategies for dealing with smallpox are based on vaccination using live vaccinia virus (VV),2, 3 a closely related member of the orthopoxvirus genus, which shares >90% sequence identity with VAR. Vaccination using live VV, however, can cause serious complications,4 underscoring the need for effective anti-viral treatments, particularly since anti-viral treatment may be a more efficacious strategy compared with vaccination.5 Recent strategies to target VAR for small-molecule therapeutics included the use of polymerase inhibitors,6 notably Cidofovir, inhibitors of extracellular virus formation7 and tyrosine kinase inhibitors including Gleevec.8, 9 Cidofovir is currently the only approved antiviral drug for the treatment of orthopoxviruses, although it is not approved for smallpox treatment. Other host–virus interactions have been identified that may be suitable drug targets10, 11 but currently require further investigation.Several poxvirus members other than VAR have been shown to rely on virulence factors that prevent premature host cell demise via programmed cell death or apoptosis,12, 13, 14, 15, 16 thus ensuring survival and proliferation. The B-cell lymphoma 2 (Bcl-2) protein family is a key mediator for maintaining cell survival or to drive apoptosis, thereby removing infected, damaged or unwanted cells,17 and sequence, structural and functional orthologs of Bcl-2 have been found in a number of poxviruses.18 Certain viral Bcl-2-like proteins were only identified as family members after their 3D structures were determined, owing to their complete lack of sequence identity to mammalian Bcl-2 proteins. This group of proteins include the myxoma virus M11L12 and VV F1L15 and N1L.19 Myxoma virus M11L was shown to adopt the classical Bcl-2 fold20, 21 that utilizes the canonical Bcl-2 homology 3 (BH3)-binding groove to engage BH3 ligands to exert its pro-survival effect. VV F1L also adopts a Bcl-2 fold, but unlike M11L it exists as a domain-swapped dimer,22, 23 whereas N1L also adopted a dimeric Bcl-2 fold but with a different dimeric arrangement.24, 25Although F1L from VAR has not previously been investigated, the VV homolog is well characterized. VV F1L has been shown to inhibit the mitochondrial pathway of apoptosis by replacing Mcl-126 and interacts with the isolated BH3 domains of Bim, Bax and Bak,23 which are bound in the canonical Bcl-2-binding groove.22 Furthermore, an F1L-deficient VV potently causes Bak/Bax-mediated apoptosis.15, 27 Functionally, VV F1L appears to rely primarily on neutralization of Bim in the context of a viral infection.22 Given the close similarity between VAR and VV, VAR may also rely on inhibition of host cell apoptosis for successful infection and proliferation. Disruption of VAR ability to inhibit apoptosis thus may constitute an attractive strategy for small-molecule-based intervention. To investigate this possibility, we performed a biochemical, structural and functional characterization of VAR F1L. Here we report that despite possessing a nearly identical 3D structure and sequence, VAR F1L inhibits apoptosis via a different mechanism compared with its homolog in VV.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号