首页 | 本学科首页   官方微博 | 高级检索  
     


Presynaptic inhibitory effects of rocuronium and SZ1677 on [3H]acetylcholine release from the mouse hemidiaphragm preparation
Authors:Takagi Shunichi  Adachi Yushi U  Saubermann Albert J  Vizi E Sylvester
Affiliation:

a Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O. Box 67, H-1450 Budapest, Hungary

b Department of Anesthesiology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10461, USA

Abstract:It has been shown that nondepolarizing muscle relaxants may have effects on nicotinic acetylcholine receptors (nAChRs) other than those located on the skeletal muscle: some of them possess inhibitory effects on neuronal nAChRs [Anesth. Analg. 59 (1980) 935; Trends Pharmacol. Sci. 9 (1988) 16; Pharmacol. Ther. 73 (1997) 75]. It was shown that, e.g. (+)-tubocurarine and pancuronium are able to inhibit ACh release from the axon terminals of hemidiaphragm preparations and produce tetanic fade indicating their presynaptic effect. In this study rocuronium, a nondepolarizing steroidal muscle relaxant with shorter onset of action, and SZ1677 [1-(3-hydroxy-17β-acetyloxy)-2β-(1.4-dioxa-8-azaspiro-[4,5]-dec-8-yl)-(5-androstane-16β-yl)-1-(2-propenyl) pyrrolidinium bromide], a short-acting muscle relaxant [Ann. New York Acad. Sci. 757 (1995b) 84] inhibited the release of ACh in response to axonal stimulation, while -bungarotoxin failed to reduce the stimulation evoked release of ACh and did not produce tetanic fade. These results indicate that in addition to their postsynaptic effect, rocuronium and SZ1677 have presynaptic inhibitory effects on neuronal nAChRs at the neuromuscular junction. The finding that -bungarotoxin does not inhibit the release and does not produce tetanic fade indicates that it possesses affinity only for the postsynaptic muscle nAChRs.
Keywords:Rocuronium   SZ1677   Presynaptic effect   Neuromuscular junction   ACh release
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号