首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of a 5'-phosphate on the stability of triple helix.
Authors:K Yoon   C A Hobbs   A E Walter     D H Turner
Abstract:An effect of 5'-phosphorylation on the stability of triple helical DNA containing pyrimidine:purine:pyrimidine strands has been demonstrated by both gel electrophoresis and UV melting. A 5'-phosphate on the purine-rich middle strand of a triple helix lowers the stability of triple helix formation by approximately 1 kcal/mol at 25 degrees C. The middle strand is involved in both Watson-Crick and Hoogsteen base pairing. In contrast, a 5'-phosphate on the pyrimidine-rich strands, which are involved in either Watson-Crick or Hoogsteen base pairing, has a smaller effect on the stability of triple helix. The order of stability is: no phosphate on either strand > phosphate on both pyrimidine strands > phosphate on purine strand > phosphate on all three strands. Differential stability of triple helix species is postulated to stem from an increase in rigidity due to steric hindrance from the 5'-phosphate. This result indicates that labelling with 32P affect equilibrium in triplex formation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号