首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of the chylomicron-remnant-recognition sites on parenchymal and Kupffer cells of rat liver. Selective inhibition of parenchymal cell recognition by lactoferrin.
Authors:M C van Dijk  G J Ziere  T J van Berkel
Institution:Division of Biopharmaceutics, University of Leiden, Sylvius Laboratory, The Netherlands.
Abstract:Upon injection of chylomicrons into rats, chylomicron remnants are predominantly taken up by parenchymal cells, with a limited contribution (8.6% of the injected dose) by Kupffer cells. In vitro storage of partially processed chylomicron remnants for only 24 h leads, after in vivo injection, to an avid recognition by Kupffer cells (uptake up to 80% of the total liver-associated radioactivity). Lactoferrin greatly reduces the liver uptake of chylomicron remnants, which appears to be the consequence of a specific inhibition of the uptake by parenchymal cells. Kupffer-cell uptake is not influenced by lactoferrin. In vitro studies with isolated parenchymal and Kupffer cells show that both contain a specific recognition site for chylomicron remnants. The Kupffer-cell recognition site differs in several ways from the recognition site on parenchymal cells as follows. (a) The maximum level of binding is 3.7-fold higher/mg cell protein than with parenchymal cells. (b) Binding of chylomicron remnants is partially dependent on the presence of calcium, while binding to parenchymal cells is not. (c) beta-Migrating very-low-density lipoprotein is a less effective competitor for chylomicron-remnant binding to Kupffer cells compared to parenchymal cells. (d) Lactoferrin leaves Kupffer-cell binding uninfluenced, while it greatly reduces binding of chylomicron remnants to parenchymal cells. The properties of chylomicron-remnant recognition by parenchymal cells are consistent with apolipoprotein E being the determinant for recognition. It can be concluded that the chylomicron-remnant recognition site on Kupffer cells possesses properties which are distinct from the recognition site on parenchymal cells. It might be suggested that partially processed chylomicron remnants are specifically sensitive to a modification, which induces an avid interaction with the Kupffer cells. The recognition site for (modified) chylomicron remnants on Kupffer cells might function as a protection system against the occurrence of these potential atherogenic chylomicron-remnant particles in the blood.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号