首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Induction of flexibility through protein-protein interactions
Authors:Fayos Rosa  Melacini Giuseppe  Newlon Marceen G  Burns Lora  Scott John D  Jennings Patricia A
Institution:Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0359, USA.
Abstract:The dimerization/docking (D/D) domain of the cyclic AMP-dependent protein kinase (PKA) holoenzyme mediates important protein-protein interactions that direct the subcellular localization of the enzyme. A kinase anchoring proteins (AKAPs) provide the molecular scaffold for the localization of PKA. The recent solution structures of two D/D AKAP complexes revealed that the AKAP binds to a surface-exposed, hydrophobic groove on the D/D. In the present study, we present an analysis of the changes in hydrogen/deuterium exchange protection and internal motions of the backbone of the D/D when free and bound to the prototype anchoring protein, Ht31(pep). We observe that formation of the complex results in significant, but small, increases in H/D exchange protection factors as well as increases in backbone flexibility, throughout the D/D, and in particular, in the hydrophobic binding groove. This unusual observation of increased backbone flexibility and marginal H/D exchange protection, despite high affinity protein-ligand interactions, may be a general effect observed for the stabilization of hydrophobic ligand/hydrophobic pocket interactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号