首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biosynthesis of monoterpenes: Preliminary characterization of l-endo-fenchol synthetase from fennel (Foeniculum vulgare) and evidence that no free intermediate is involved in the cyclization of geranyl pyrophosphate to the rearranged product
Authors:Rodney Croteau  Mark Felton  Robert C Ronald
Institution:1. Department of Agricultural Chemistry and the Program in Biochemistry and Biophysics, Washington State University, Pullman, Washington 99164 U.S.A.;2. Department of Chemistry, Washington State University, Pullman, Washington 99164 U.S.A.
Abstract:A soluble enzyme preparation from the leaves of fennel (Foeniculum vulgare M.) has been shown to catalyze the cation-dependent cyclization of both geranyl pyrophosphate and neryl pyrophosphate to the bicyclic rearranged monoterpene l-endo-fenchol (R. Croteau, M. Felton, and R. Ronald, 1980 Arch. Biochem. Biophys.200, 524–533). To examine the possible presence of free intermediates between the acyclic precursors and fenchol, and to remove competing cyclase and pyrophosphatase activities, the soluble preparation was partially purified by ammonium sulfate fractionation followed by gel filtration on Sephadex G-150 and ion exchange chromatography on O-diethylaminoethyl-cellulose. Activities for the cyclization of geranyl pyrophosphate and neryl pyrophosphate to fenchol were coincident on Chromatographic fractionation suggesting that the same enzyme was capable of cyclizing both acyclic substrates. No interconversion of the acyclic precursors was detected. Although bornyl pyrophosphate is a free intermediate in the biosynthesis of the related bicyclic monoterpenol borneol, both protein fractionation and isotopic dilution experiments ruled out endo-fenchyl pyrophosphate as a free intermediate in fenchol biosynthesis. Similarly, while construction of the fenchane skeleton was demonstrated to involve the rearrangement of an intermediate pinane skeleton, isotopic dilution experiments ruled out both optical antipodes of α-pinene, β-pinene, cis-2-pinanol, trans-2-pinanol, and the corresponding 2-pinyl pyrophosphates as free intermediates of the enzyme-catalyzed reaction. Furthermore, exhaustive search of the enzymatic reaction products provided no evidence to suggest the involvement of any free intermediate between the acyclic precursor and fenchol. The endo-fenchol synthetase has an apparent molecular weight of 60,000, shows a pH optimum near 7.0, and requires Mn2+ (1 mm) for catalytic activity. Co2+ can partially substitute for Mn2+, but other divalent cations are ineffective. The partially purified synthetase is inhibited by p-hydroxymercuribenzoate and by phenylglyoxal, and it exhibits a preference for geranyl pyrophosphate over neryl pyrophosphate as substrate. An integrated scheme is proposed for the cyclization and rearrangement catalyzed by fenchol synthetase.
Keywords:Author to whom correspondence may be addressed  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号