首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The helical structure of surfactant peptide KL4 when bound to POPC: POPG lipid vesicles
Authors:Mills Frank D  Antharam Vijay C  Ganesh Omjoy K  Elliott Doug W  McNeill Seth A  Long Joanna R
Institution:Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Box 100245, Gainesville, Florida 32610-0245, USA.
Abstract:KL 4 is a 21-residue peptide employed as a functional mimic of lung surfactant protein B, which successfully lowers surface tension in the alveoli. A mechanistic understanding of how KL 4 affects lipid properties has proven elusive as the secondary structure of KL 4 in lipid preparations has not been determined at high resolution. The sequence of KL 4 is based on the C-terminus of SP-B, a naturally occurring helical protein that binds to lipid interfaces. The spacing of the lysine residues in KL 4 precludes the formation of a canonical amphipathic alpha-helix; qualitative measurements using Raman, CD, and FTIR spectroscopies have given conflicting results as to the secondary structure of the peptide as well as its orientation in the lipid environment. Here, we present a structural model of KL 4 bound to lipid bilayers based on solid state NMR data. Double-quantum correlation experiments employing (13)C-enriched peptides were used to quantitatively determine the backbone torsion angles in KL 4 at several positions. These measurements, coupled with CD experiments, verify the helical nature of KL 4 when bound to lipids, with (phi, psi) angles that differ substantially from common values for alpha-helices of (-60, -45). The average torsion angles found for KL 4 bound to POPC:POPG lipid vesicles are (-105, -30); this deviation from ideal alpha-helical structure allows KL 4 to form an amphipathic helix at the lipid interface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号