首页 | 本学科首页   官方微博 | 高级检索  
     


Dopamine Uptake by Rat Striatal Synaptosomes: A Compartmental Analysis
Authors:Hans Schoemaker  Victor J. Nickolson
Affiliation:Department of CNS Pharmacology, Scientific Development Group, Organon, Oss, The Netherlands
Abstract:Abstract: Dopamine (DA) uptake into synaptosomes from rat corpus striatum was studied in the presence of a monoamine oxidase (MAO) inhibitor and dithiothreitol, by means of a filtration technique. Under these conditions a steady state develops rapidly in which the synaptosomal DA content remains constant while the continuing DA uptake is counterbalanced by DA efflux from the synaptosome. Exchange of synaptosomal [3H]DA and [14C]DA was measured under these conditions. In timecourse experiments it was found that exchange could be described significantly better by a three-compartment model than by a two-compartment model. However, if synaptosomes from reserpine-pretreated animals were used, analysis according to a three-compartment model did not result in a significantly better fit compared with a two-compartment model. Subsequently, kinetic transfer parameters describing DA fluxes between compartments at different DA concentrations were calculated from the fitted exchange curves. A Michaelis-Menten kinetic analysis indicated that only the in-series three-compartment configuration, in which DA is taken up from the medium into one synaptosomal compartment, from which it can subsequently be transferred to a second compartment without direct access to the medium, gave kinetically acceptable results. Transfer parameters in synaptosomes from reserpine-treated rats were comparable to those parameters describing DA transport between the medium and the first intrasynaptosomal compartment as measured under control conditions. Morover, it was found that potassium depolarization of synaptosomes resulted in a release of DA in a quantity similar to that found in the second intrasynaptosomal compartment. It is suggested that the two intrasynaptosomal compartments found correspond to a cytoplasmatic and vesicular DA pool, respectively. The functional significance of these findings is discussed in terms of the regulation of DA levels within the nerve terminal.
Keywords:Synaptosomes    Dopamine    Kinetic analysis    Three-compartment model    Steady state
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号