首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetic and ultrastructural studies of interactions of target-sensitive immunoliposomes with herpes simplex virus
Authors:R J Ho  H P Ting-Beall  B T Rouse  L Huang
Institution:Department of Biochemistry, University of Tennessee, Knoxville 37996-0840.
Abstract:The bilayer phase of dioleoylphosphatidylethanolamine (PE) can be stabilized with palmitoyl-IgG monoclonal antibody to the glycoprotein gD of the herpes simplex virus (HSV). Interactions of PE immunoliposomes with the target virions were characterized by analyzing the kinetics of lipid mixing, by liposomal content release, and by ultrastructural studies. As revealed by a resonance energy transfer assay, lipid mixing between PE immunoliposomes and virions was very rapid, with a second-order rate constant (kapp) of 0.173 (min)-1 (microgram/mL virus)-1. In comparison, content release from PE immunoliposomes was much slower and exhibited multiple-phase, mixed-order kinetics, indicating that liposome destabilization involved fusion of liposomes with HSV. The extent and the apparent rate of liposome destabilization were strongly dependent on liposome concentration. This was evident by the fact that only one to two liposomes were destabilized by each virus particle at low liposome concentration (0.1 microM). For higher liposome concentrations (1-10 microM), this value was 35-104. This finding implies that collision among the virus-bound liposomes is essential for the eventual collapse of PE immunoliposomes to form the hexagonal (HII) equilibrium phase which was observed using freeze-fracture electron microscopy. Studies employing soluble gD, immobilized on latex beads, indicated that a multivalent antigen source is essential for PE immunoliposome destabilization. Immediately after liposome-virus binding, fusion of liposome with the viral membrane then follows. Upon growth of the fusion complexes, which increase to 35-104 liposomes for each virus, an eventual collapse of the structure results, driving PE to its equilibrium structure of HII phase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号