首页 | 本学科首页   官方微博 | 高级检索  
   检索      


CYCLOIDEA 2 Clade Genes: Key Players in the Control of Floral Symmetry,Inflorescence Architecture,and Reproductive Organ Development
Authors:Marco Fambrini  Claudio Pugliesi
Institution:1.Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali (DiSAAA-a),Università di Pisa,Pisa,Italy
Abstract:Undoubted lines of evidence point out that members of CYCLOIDEA (CYC) 2 clade are essential players to control flower symmetry and, amusingly, also are determinants of capitula architecture (pseudanthium). In several species, CYC-like genes influence the androecium patterning, but to date, the function of these genes in the development of gynoecium organs is less clear. In this review, we first reported details about floral symmetry and an overview of genes and molecular mechanisms regulating the development of zygomorphism in different angiosperm lineages (e.g., basal and core eudicots and monocots). Then, we paid emphasis on the role of CYC-like genes in the development of heterogamous inflorescence of sunflower as well as other Asteraceae and some species within the Dipsacaceae family. Helianthus annuus is particularly attractive because it represents a useful model to study the role of CYC-like genes on shaping floral corolla as well as the differentiation of reproductive organs in different flowers of pseudanthia. A special attention was reserved to inflorescence morphology mutants of sunflower (i.e., Chrysanthemoids2 and tubular ray flower) because they provide useful information on the role of CYC-like genes in the radiate capitulum evolution. Finally, we discuss data from literature to suggest that CYC-like genes are also co-opted to regulate stamen and carpel differentiation likely throughout their interaction with the cell cycle and flower organ identity genes. The recruitment of reproductive organs in ray flowers also supports the phylogenetic origin of a radiate inflorescence of sunflower from a discoid capitulum and suggests that in sterile zygomorphic ray flower primordia the latent identity to differentiate both microsporangium and macrosporangium was conserved.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号