首页 | 本学科首页   官方微博 | 高级检索  
     


Fungal and bacterial contributions to nitrogen cycling in cheatgrass-invaded and uninvaded native sagebrush soils of the western USA
Authors:Nicole M. DeCrappeo  Elizabeth J. DeLorenze  Andrew T. Giguere  David A. Pyke  Peter J. Bottomley
Affiliation:1.USGS Forest and Rangeland Ecosystem Science Center,Corvallis,USA;2.Department of Crop and Soil Science,Oregon State University,Corvallis,USA
Abstract:

Aim

There is interest in determining how cheatgrass (Bromus tectorum L.) modifies N cycling in sagebrush (Artemisia tridentata Nutt.) soils of the western USA.

Methods

To gain insight into the roles of fungi and bacteria in N cycling of cheatgrass-invaded and uninvaded sagebrush soils, the fungal protein synthesis inhibitor, cycloheximide (CHX), and the bacteriocidal compound, bronopol (BRO) were combined with a 15NH4 + isotope pool dilution approach.

Results

CHX reduced gross N mineralization to the same rate in both sagebrush and cheatgrass soils indicating a role for fungi in N mineralization in both soil types. In cheatgrass soils BRO completely inhibited gross N mineralization, whereas, in sagebrush soils a BRO-resistant gross N mineralization rate was detected that was slower than CHX sensitive gross N mineralization, suggesting that the microbial drivers of gross N mineralization were different in sagebrush and cheatgrass soils. Net N mineralization was stimulated to a higher rate in sagebrush than in cheatgrass soils by CHX, implying that a CHX inhibited N sink was larger in the former than the latter soils. Initial gross NH4 + consumption rates were reduced significantly by both CHX and BRO in both soil types, yet, consumption rates recovered significantly between 24 and 48 h in CHX-treated sagebrush soils. The recovery of NH4 + consumption in sagebrush soils corresponded with an increase in the rate of net nitrification.

Conclusions

These results suggest that cheatgrass invasion of sagebrush soils of the northern Great Basin reduces the capacity of the fungal N consumption sink, enhances the capacity of a CHX resistant N sink and alters the contributions of bacteria and fungi to gross N mineralization.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号