首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The analysis of determining factors and evaluation of tolerance to photoinhibition in wheat (<Emphasis Type="Italic">Triticum aestivum</Emphasis> L.)
Authors:H Li  Q Zheng  J Zhang  B Li  Z Li
Institution:1.State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing,China;2.Zhaoxian Institute of Agricultural Sciences,Shijiazhuang,China
Abstract:Photoinhibition is a significant constraint for improvement of radiation-use efficiency and yield potential in cereal crops. In this work, attached fully expanded leaves of seedlings were used to assay the factors determining photoinhibition and for evaluation of tolerance to photoinhibition in wheat (Triticum aestivum L.). Our results showed that even 1 h under PPFD of 600 µmol(photon) m?2 s?1 could significantly reduce maximal quantum yield of PSII photochemistry (Fv/Fm) and performance index (PI) compared to low light 300 µmol(photon) m?2 s?1]. The decrease of Fv/Fm and PI was more noticeable with the increase of light intensity; irradiance higher than 800 µmol(photon) m?2 s?1 resulted in photoinhibition. Compared to 25°C, lower (20°C) or higher temperature (≥ 35°C) aggravated photoinhibition, while slightly high temperature (28°) alleviated photoinhibition. At 25°C, irradiance of 1,000 µmol(photon) m–2 s–1 for 1 h was enough to cause photoinhibition and a significant decrease of Fv/Fm, PI, trapped energy flux, electron transport flux, and density of reaction center as well as increase of dissipated energy flux per cross section were observed. In addition, seedlings at 21–32 days after planting showed a relatively stable phenotype, while the younger or older seedlings indicated an increased susceptibility to photoinhibition, especially in senescing leaves. Finally, six wheat varieties with relative tolerance to photoinhibition were identified from 22 Chinese winter wheat varieties by exposing attached leaves of the 25-d old seedlings for 1 h to 1,000 µmol(photon) m–2 s–1 at 25°C. Therefore, our work established a possible method for development of new wheat varieties with enhanced tolerance to photoinhibition.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号