首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Bisecting Galactose as a Feature of N-Glycans of Wild-type and Mutant Caenorhabditis elegans
Authors:Shi Yan  Lothar Brecker  Chunsheng Jin  Alexander Titz  Martin Dragosits  Niclas G Karlsson  Verena Jantsch  Iain B H Wilson  Katharina Paschinger
Institution:From the ‡Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria; ;§Institut für Organische Chemie, Universität Wien, 1090 Wien, Austria; ;¶Institutionen för Biomedicin, Göteborgs universitet, 405 30 Göteborg, Sweden; ;‖Department für Chromosomenbiologie, Max F. Perutz Laboratories, Universität Wien, 1030 Wien, Austria
Abstract:The N-glycosylation of the model nematode Caenorhabditis elegans has proven to be highly variable and rather complex; it is an example to contradict the existing impression that “simple” organisms possess also a rather simple glycomic capacity. In previous studies in a number of laboratories, N-glycans with up to four fucose residues have been detected. However, although the linkage of three fucose residues to the N,N′-diacetylchitobiosyl core has been proven by structural and enzymatic analyses, the nature of the fourth fucose has remained uncertain. By constructing a triple mutant with deletions in the three genes responsible for core fucosylation (fut-1, fut-6 and fut-8), we have produced a nematode strain lacking products of these enzymes, but still retaining maximally one fucose residue on its N-glycans. Using mass spectrometry and HPLC in conjunction with chemical and enzymatic treatments as well as NMR, we examined a set of α-mannosidase-resistant N-glycans. Within this glycomic subpool, we can reveal that the core β-mannose can be trisubstituted and so carries not only the ubiquitous α1,3- and α1,6-mannose residues, but also a “bisecting” β-galactose, which is substoichiometrically modified with fucose or methylfucose. In addition, the α1,3-mannose can also be α-galactosylated. Our data, showing the presence of novel N-glycan modifications, will enable more targeted studies to understand the biological functions and interactions of nematode glycans.Nematodes represent, along with arthropods, one of the largest groups of animals to exist on the planet; 25.000 species are described, but the existence of up to one million has been estimated (1, 2). They have various ecological niches and include free-living “worms” in the soil, fungivorous, entomopathogenic, and necromenic species as well as parasites of plants and mammals, which share the basic conserved body plan (more-or-less a digestive tube surrounded with muscle, whether larger or smaller). There are five major clades (Rhabditina, Enoplia, Spirurina, Tylenchina, and Dorylaimia) (2), yet the glycosylation of only a few nematode species has been studied with an inevitable focus on the model nematode Caenorhabditis elegans and parasitic species (3). Thereby, the use of C. elegans mutants has been highly valuable in dissecting aspects of nematode N-glycan biosynthesis and revealing the in vivo substrates for certain glycosyltransferases (4).As many nematodes are parasites, their interactions with the immune systems of their hosts have attracted attention; particularly, there are relationships between autoimmunity, allergy, vaccination, and helminth infections. The “old friends” hypothesis seeks to understand the evolutionary factors that have shaped the immune system and to explain correlations between lifestyles in the developed world and modern “epidemics,” which are due to immunological misbalance (57). Promising data have suggested that “worm therapy” may bring advantages to some patients with Crohn''s disease or allergies (8, 9); however, such approaches are controversial. Nevertheless, crude extracts even of Caenorhabditis elegans were shown to induce a glycan-dependent Th2 response (10), whereas the excretory-secretory products of some nematodes also have immunomodulatory activity (11). Furthermore, the native glycoproteins of some nematodes have proven effective in vaccination trials, whereas recombinant forms are not, which is suggestive that post-translational modifications may have a role in an efficacious immune response (12).As at least some of the molecules relevant to nematode immunomodulation or vaccination are glycoproteins, a proper understanding of nematode glycosylation is of biomedical and veterinary relevance. Over the years, it has become apparent that the core chitobiosyl region of nematode N-glycans is subject to a range of modifications, with up to three core fucose residues being present (α1,3- and α1,6-linked on the reducing-terminal “proximal” GlcNAc and α1,3-linked on the second “distal” GlcNAc). However, up to four fucose residues have been detected on C. elegans N-glycans and the exact nature of the linkage of the fourth fucose has remained obscure despite work in our own and other laboratories (3, 1315). Combined with the latest knowledge regarding the specificity of C. elegans core fucosyltransferases (13, 16, 17) as well as our recent data regarding the exact structures of N-glycans from the C. elegans double hexosaminidase mutant and other nematodes (1820), we concluded that some models for the tri- and tetrafucosylated N-glycans were incorrect. By preparing a triple mutant unable to core fucosylate its N-glycans, we generated a C. elegans strain containing maximally one fucose residue on the N-linked oligosaccharides. Thereby a pool of unusual mannosidase-resistant N-glycans was identified and, using mass spectrometry (MS) and NMR, we reveal their modification with bisecting galactose frequently capped with fucose or methylfucose.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号