首页 | 本学科首页   官方微博 | 高级检索  
     


An insulin-sensitive cation channel controls [Na+]i via [Ca2+]o-regulated Na+ and Ca2+ entry.
Authors:J E McGeoch and A D Morielli
Abstract:The insulin-stimulated cation channel previously identified in patch-clamped muscle preparations is here shown to be responsible for bulk Na+ entry into the cell. The mainly Na+ current of the channel was shown to be accompanied by an inhibitory Ca2+ component responsible for oscillations. Here, using quantitative fluorescence imaging of Fura-2- and SBFI-loaded soleus muscle, we measure changes in [Na+]i and [Ca2+]i related to channel function. Insulin increased [Na+]i and [Ca+]i in a transient spike of < 1-min duration. There was a momentary dip in [Na+]i related to inhibition of the channel by the Ca2+ spike, and changes in external Ca2+ were shown to alter [Na+]i via the cation channel, all effects being blocked by the specific channel inhibitor mu-conotoxin, but not by tetrodotoxin. The [Ca2+]i spike could also be induced by 8-bromo cyclic-guanosine 5'-monophosphate, an analogue of the channel-activator cyclic-guanosine 5'-monophosphate (cGMP). In addition it was noted that insulin reduced the [Ca2+]i rise upon subsequent muscle depolarization by a factor of 3.5. Insulin could be substituted with phorbol ester for the same effect and HA1004, a protein kinase inhibitor, blocked the reduction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号