首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A Suppressor Analysis of Residues Involved in Cation Transport in the Lactose Permease: Identification of a Coupling Sensor
Authors:Peter J Franco  Elizabeth A Matzke  Jerry L Johnson  Brian M Wiczer  Robert J Brooker
Institution:(1) Department of Genetics, Cell Biology and Development and the Biotechnology Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
Abstract:Four amino acids critical for lactose permease function were altered using site-directed mutagenesis. The resulting Quad mutant (E269Q/R302L/H322Q/E325Q) was expressed at 60% of wild-type levels but found to have negligible transport activity. The Quad mutant was used as a parental strain to isolate suppressors that regained the ability to ferment the α-galactoside melibiose. Six different suppressors were identified involving five discrete amino acid changes and one amino acid deletion (Q60L, V229G, Y236D, S306L, K319N and ΔI298). All of the suppressors transported α-galactosides at substantial rates. In addition, the Q60L, ΔI298 and K319N suppressors regained a small but detectable amount of lactose transport. Assays of sugar-driven cation transport showed that both the Q60L and K319N suppressors couple the influx of melibiose with cations (H+ or H3O+). Taken together, the data show that the cation-binding domain in the lactose permease is not a fixed structure as proposed in previous models. Rather, the data are consistent with a model in which several ionizable residues form a dynamic coupling sensor that also may interact directly with the cation and lactose.
Keywords:Suppressor analysis  Cation Transport  Lactose permease  Coupling sensor
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号