首页 | 本学科首页   官方微博 | 高级检索  
   检索      


500 MHz H-NMR studies of bile salt-phosphatidylcholine mixed micelles and vesicles Evidence for differential motional restraint on bile salt and phosphatidylcholine resonances
Authors:Ruth E Stark  Mary F Roberts
Abstract:1H nuclear magnetic resonance (NMR) spectra at 500 MHz have been obtained for taurocholate/egg phosphatidylcholine mixtures of varying composition. The excellent chemical shift dispersion permits identification of most resonances for each component. This high-resolution character of the NMR spectra is retained until the phosphatidylcholine (PC) mole fraction exceeds 60–70% (the exact limit depends on ionic strength). 1H linewidths have been monitored as a function of solute composition in order to evaluate trends in local molecular mobility of each component as the distribution of aggregate particles is varied, and to examine the effects of added NaCl in altering micellar size and shape. Although prior light scattering studies (Mazer, N.A., Benedek, G.B. and Carey, M.C. (1980) Biochemistry 19, 601–615) and our own work indicate a 6-fold increase in particle hydrodynamic radius from pure taurocholate micelles to 1 : 1 taurocholate/PC mixtures containing 150 mM NaCl, both lipid components retain substantial motional freedom and exhibit narrow NMR signals in this compositional region. As the solubilization limit for PC is approached (approx. 2:1 PC:taurocholate), differential behavior is observed for the two components: the motion of taurocholate becomes preferentially restricted, while polar portions of the PC remain mobile until large multilayers predominate.
Keywords:Bile salt-phospholipid interaction  Taurocholate  Phosphatidylcholine  1H-NMR  (Mixed micelle)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号