首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Improvement of potential therapeutic value of tumor necrosis-alpha (TNF-alpha) by charge modulation in the tip region
Authors:Fonda Irena  Pernus Mojca  Gaberc-Porekar Vladka  Kenig Maja  Stalc Anton  Meager Anthony  Menart Viktor
Institution:National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia.
Abstract:Analysis of published data reveals that the introduction of more basic amino acid residues in the flexible N-terminal region of the human tumour necrosis factor alpha (TNF) molecule indicates a weak but consistent trend towards increased in vitro cytotoxicity, especially when the effect of N-terminal length is taken into account. In our laboratory, a series of TNF analogues with a charge modification in the tip region of the molecule was prepared, and cytotoxicity measured. Similar trends in cytotoxicity with increasing basicity of the TNF analogue were found in this study for two mouse cell lines, L929 and WEHI-164 clone 13-1, as well as for the human line KYM-1D4. For the series of analogues as a whole, a general increase in in vitro cytotoxicity with increasing pI values was not apparent, but some analogues with charge reversal in the tip region, for example, the LK-805 analogue (E107K), exhibited significantly increased cytotoxicity in comparison to native TNF in a range of cell lines, including L929, KYM-1D4-K, WEHI-164 clone 13-1, HEPA 1-6 and EAhy926 cell lines. Experiments with heparinase-pre-treated cells demonstrated that the increased in vitro cytotoxicity of LK-805 is most probably due to interactions with cell surface heparan sulphates that effectively concentrate it before binding to TNF receptors occurs. Examination of structural models of TNF bound to soluble TNF receptor 1 (TNFR1) indicates that simple mutations in the tip region most probably cannot interact with receptor binding sites, and therefore do not directly modulate cytotoxicity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号