首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conformational studies of poly-L-alanine in water
Authors:R T Ingwall  H A Scheraga  N Lotan  A Berger  E Katchalski
Abstract:The conformational properties of poly-L -alanine have been examined in aqueous solutions in order to investigate the influence of hydrophobic interactions on the helix–random coil transition. Since water is a poor solvent for poly-L -alanine, water-soluble copolymers of the type (D , L -lysine)m–(L alanine)n-(D , L -lysine)m, having 10, 160, 450, and 1000 alanyl residues, respectively, in the central block, were synthezised. The optical rotatory dispersion of the samples was investigated in the range 190–500 mμ, and the rotation at 231 mμ was related to the α-helix content, θH, of the alanine section. In salt-free solutions, at neutral pH, the three large polymers show high θH values, which are greatly reduced when the temperature is increased from 5 to 80°C. No helicity was observed for the small (n = 10) polymer. By applying the Lifson-Roig theory, the following parameters were obtained for the transition of a residue from a coil to a helical state: ν = 0.012; ΔH = ?190 ± 40 cal./mole; ΔS = ?0.55 ± 0.12 e.u. Since ΔH and ΔS differ from the values expected for a process involving only the formation of a hydrogen bond, and in a manner predicted by theories for the influence of hydrophobic bonding on helix stability, it is concluded that a hydrophobic interaction is also involved. In the presence of salt (0.2M NaCl), or when the ε-amino groups of the lysyl residues are not protonated (pH = 12), the helical form of the two large polymers (n = 450 and n = 1000) is more stable than in water. Since the electrostatic repulsion between the lysine end blocks is greatly reduced under these conditions, the alanine helical sections fold back on themselves, and this conformation is stabilized by interchain hydrophobia bonds. This structure was predicted by the theory for the equilibrium between such interacting helices, non-interacting helices, and the random coil.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号