首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Investigations on heat resistance of spinach leaves
Authors:Kurt A Santarius  Mechthild Müller
Institution:(1) Botanisches Institut, Universität Düsseldorf, Universitätsstraße 1, D-4000 Düsseldorf, Federal Republic of Germany;(2) Present address: Fakultät für Biologie, Universität Bielefeld, D-4800 Bielefeld, Federal Republic of Germany
Abstract:Exposure of spinach plants to high temperature (35° C) increased the heat resistance of the leaves by about 3° C. This hardening process occurred within 4 to 6 h, whereas dehardening at 20°/15° C required 1 to 2 days. At 5° C dehardening did not take place. Hardening and dehardening occurred in both the dark and the light. The hardiness was tested by exposure of the leaves to heat stress and subsequent measurements of chlorophyll fluorescence induction and light-induced absorbance changes at 535 nm on the leaves and of the photosynthetic electron transport in thylakoids isolated after heat treatment. Heat-induced damage to both heat-hardened and non-hardened leaves seemed to consist primarily in a breakdown of the membrane potential of the thylakoids accompanied by partial inactivation of electron transport through photosystem II. The increase in heat resistance was not due to temperature-induced changes in lipid content and fatty acid composition of the thylakoids, and no conspicuous changes in the polypeptide composition of the membranes were observed. Prolonged heat treatment at 35° C up to 3 days significantly decreased the total lipid content and the degree of unsaturation of the fatty acids of membrane lipids without further increase in the thermostability of the leaves. Intact chloroplasts isolated from heat-hardened leaves retained increased heat resistance. When the stroma of the chloroplasts was removed, the thermostability of the thylakoids was decreased and was comparable to the heat resistance of chloroplast membranes obtained from non-hardened control plants. Compartmentation studies demonstrated that the content of soluble sugars within the chloroplasts and the whole leaf tissue decreased as heat hardiness increased. This indicated that in spinach leaves, sugars play no protective role in heat hardiness. The results suggest that changes in the ultrastructure of thylakoids in connection with a stabilizing effect of soluble non-sugar stroma compounds are responsible for acclimatization of the photosynthetic apparatus to high temperature conditions. Changes in the chemical composition of the chloroplast membranes did not appear to play a role in the acclimatization.Abbreviations DGDG digalactosyl diglyceride - MGDG monogalactosyl diglyceride - PG phosphatidyl glycerol - PGA 3-phosphoglyceric acid Dedicated to Professor Wilhelm Simonis, Würzburg, on the occasion of his 70th birthday
Keywords:Absorbance change  Chlorophyll fluorescence  Heat injury  Membrane lipids  Spinacia  Sugar compartmentation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号