首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of cadmium uptake in Lactobacillus plantarum and isolation of cadmium and manganese uptake mutants.
Authors:Z Hao  H R Reiske  D B Wilson
Affiliation:Institute for Comparative and Environmental Toxicology, Cornell University, Ithaca, New York 14853, USA.
Abstract:Two different Cd(2+) uptake systems were identified in Lactobacillus plantarum. One is a high-affinity, high-velocity Mn(2+) uptake system which also takes up Cd(2+) and is induced by Mn(2+) starvation. The calculated K(m) and V(max) are 0.26 microM and 3.6 micromol g of dry cell(-1) min(-1), respectively. Unlike Mn(2+) uptake, which is facilitated by citrate and related tricarboxylic acids, Cd(2+) uptake is weakly inhibited by citrate. Cd(2+) and Mn(2+) are competitive inhibitors of each other, and the affinity of the system for Cd(2+) is higher than that for Mn(2+). The other Cd(2+) uptake system is expressed in Mn(2+)-sufficient cells, and no K(m) can be calculated for it because uptake is nonsaturable. Mn(2+) does not compete for transport through this system, nor does any other tested cation, i.e., Zn(2+), Cu(2+), Co(2+), Mg(2+), Ca(2+), Fe(2+), or Ni(2+). Both systems require energy, since uncouplers completely inhibit their activities. Two Mn(2+)-dependent L. plantarum mutants were isolated by chemical mutagenesis and ampicillin enrichment. They required more than 5,000 times as much Mn(2+) for growth as the parental strain. Mn(2+) starvation-induced Cd(2+) uptake in both mutants was less than 5% the wild-type rate. The low level of long-term Mn(2+) or Cd(2+) accumulation by the mutant strains also shows that the mutations eliminate the high-affinity Mn(2+) and Cd(2+) uptake system.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号