首页 | 本学科首页   官方微博 | 高级检索  
   检索      


THE PREVENTION BY INHIBITORS OF BRAIN PROTEIN SYNTHESIS OF THE HYPERACTIVITY AND HYPERPYREXIA PRODUCED IN RATS BY MONOAMINE OXIDASE INHIBITION AND THE ADMINISTRATION OF L-TRYPTOPHAN OR 5-METHOXY-N,N-DIMETHYLTRYPTAMINE
Authors:D G Grahame-Smitha  
Institution:Medical Unit, St. Mary's Hospital Medical School, London W.2
Abstract:Abstract— In rats treated with a monoamine oxidase inhibitor, (tranylcypromine), L- tryptophan produces a stereotyped syndrome of hyperactivity and hyperpyrexia due to an increased rate of brain serotonin (5-hydroxytryptamine) synthesis. Pretreatment of rats with intraperitoneal injections of cycloheximide, acetoxycycloheximide, emetine and dehydroemetine and of mice with puromycin inhibited this syndrome. Cycloheximide also inhibited the hyperactivity caused by tranylcypromine and DL-15-hydroxtryptophan and did not affect the increased rate of brain serotonin ‘synthes’ is produced by tryptophan thus excluding a primary effect on tryptophan-5-hydroxylase. Inhibition of hyperactivity did not occur until brain protein synthesis was inhibited by greater than 65 per cent as measured by the incorporation of L-U-14C]tyrosine into brain protein in vivo. Emetine, which has been shown to inhibit brain protein synthesis inhibited hyperactivity whereas isoemetine which did not inhibit brain protein synthesis, did not inhibit hyperactivity. Under conditions where cycloheximide inhibited hyperactivity produced by tranylcypromine and L-tryptophan, a large dose of 5-methoxy-N,N-dimethyltryptamine(5-MeODMT) still produced hyperactivity showing that the rats were still capable of the same pattern of hyperactivity. However, cycloheximide did inhibit hyperactivity due to 5-MeODMT, the degree of this inhibition being dependent upon a balance between the doses of cycloheximide and 5-MeODMT. 5-MeODMT probably acts directly within the brain to cause behavioural excitation and it seems likely that the inhibitors of brain protein synthesis interfere with the mechanism of action of brain 5HT and administered 5-MeODMT rather than upon any aspect of synthesis, storage or release of brain 5HT. It is suggested that the behaviourally excitant effects of brain 5HT and 5-MeODMT are mediated in some way by a brain protein with a short biological half-life. Such a protein may act either as a factor specifically mediating the central effects of brain 5HT or as a factor regulating the neuronal response to excitation by 5HT and 5-MeODMT.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号