首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential effects of lysolipids on steroid synthesis in cells expressing endogenous LPA2 receptor
Authors:Budnik Lygia T  Brunswig-Spickenheier Bärbel
Institution:Institute for Hormone and Fertility Research, Anatomy I, University Hospital Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany. l.budnik@uke.uni-hamburg.de
Abstract:Incubation of ovarian luteal cells with the bioactive lipid mediator lysophosphatidic acid (LPA) for 180 min abolishes gonadotropin-induced steroid production with no attenuation of the cyclic AMP accumulation. Treatment with the lysolipid also diminishes 14C]steroid production in cells preloaded with either 14C]cholesterol or 14C]acetate. Neither the expression of steroidogenic acute regulatory (StAR) protein nor in vitro steroid synthesis is affected in isolated mitochondrial fractions. The LPA-induced attenuation of steroid production occurs only in the mid-cycle corpus luteum and is associated with a transient endogenous expression of mRNA for the lysophosphatidic acid A2 (LPA2) receptor (with no concomitant changes in the expression of LPA1 receptor). Expression of LPA2 is accompanied by LPA-induced sphingosine-1-phosphate (S1P) production. Because luteal cells, in the presence of the sphingosine kinase inhibitor dihydrosphingosine, can overcome the inhibitory effects of LPA on steroid synthesis, we suggest the possible requirement of intracellular S1P production. Interestingly, no LPA-induced inhibition of 8Br-cAMP-stimulated progesterone synthesis can be detected in Leydig tumor cell line MA10 cells expressing only LPA2 receptor. Surprisingly, however, exogenous S1P inhibits agonist-stimulated progesterone in both cell types by inhibiting cyclic AMP accumulation, suggesting different mechanisms of action.
Keywords:lysophosphatidic acid  epidermal differentiating gene  sphingosine-1-phosphate  progesterone  steroidogenesis  ovary  luteal cells  corpus luteum  MA10 cells
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号