首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of posttranslational formylglycine formation by luminal components of the endoplasmic reticulum
Authors:Fey J  Balleininger M  Borissenko L V  Schmidt B  von Figura K  Dierks T
Affiliation:Institut für Biochemie und Molekulare Zellbiologie, Abt. Biochemie II, Universit?t G?ttingen, Heinrich-Düker-Weg 12, G?ttingen 37073, Germany.
Abstract:C(alpha)-formylglycine is the key catalytic residue in the active site of sulfatases. In eukaryotes formylglycine is generated during or immediately after sulfatase translocation into the endoplasmic reticulum by oxidation of a specific cysteine residue. We established an in vitro assay that allowed us to measure formylglycine modification independent of protein translocation. The modifying enzyme was recovered in a microsomal detergent extract. As a substrate we used ribosome-associated nascent chain complexes comprising in vitro synthesized sulfatase fragments that were released from the ribosomes by puromycin. Formylglycine modification was highly efficient and did not require a signal sequence in the substrate polypeptide. Ribosome association helped to maintain the modification competence of nascent chains but only after their release efficient modification occurred. The modifying machinery consists of soluble components of the endoplasmic reticulum lumen, as shown by differential extraction of microsomes. The in vitro assay can be performed under kinetically controlled conditions. The activation energy for formylglycine formation is 61 kJ/mol, and the pH optimum is approximately 10. The activity is sensitive to the SH/SS equilibrium and is stimulated by Ca(2+). Formylglycine formation is efficiently inhibited by a synthetic sulfatase peptide representing the sequence directing formylglycine modification. The established assay system should make possible the biochemical identification of the modifying enzyme.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号