首页 | 本学科首页   官方微博 | 高级检索  
     


A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-beta-xylanase II
Authors:Fenel Fred  Leisola Matti  Jänis Janne  Turunen Ossi
Affiliation:Carbozyme Ltd., Keilaranta 16, 02150 Espoo, Finland. fred.fenel@carbozyme.fi
Abstract:We have successfully engineered a disulphide bridge into the N-terminal region of Trichoderma reesei endo-1,4-beta-xylanase II (XYNII) by substituting Thr-2 and Thr-28 with cysteine. The T2C:T28C mutational changes increased the half-life in thermal inactivation of this mesophilic enzyme from approximately 40 s to approximately 20 min at 65 degrees C, and from less than 10 s to approximately 6 min at 70 degrees C. Therefore, the N-terminal disulphide bridge enables the use of XYNII at substantially higher temperatures than permitted by its native mesophilic counterpart. Altogether, thermostability increased by about 15 degrees C. The kinetic properties of the mutant XYNII were maintained at the level of the wild type enzyme. Our findings demonstrated that a properly designed disulphide bridge, here within the N-terminal region of XYNII, can be very effective in resisting thermal inactivation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号