首页 | 本学科首页   官方微博 | 高级检索  
     


Nitrogen deposition,vegetation burning and climate warming act independently on microbial community structure and enzyme activity associated with decomposing litter in low‐alpine heath
Authors:NIKI PAPANIKOLAOU  ANDREA J. BRITTON  RACHEL C. HELLIWELL  DAVID JOHNSON
Affiliation:1. The Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB15 8QH, UK;2. Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
Abstract:Low‐alpine heathlands are thought to be particularly sensitive to nitrogen (N) deposition, climate and land management change, yet little is known about how these factors regulate key belowground processes, like litter turnover, under field conditions. Here we use an in situ factorial field experiment to test the effects of increased atmospheric N deposition, climate manipulation and past vegetation burning, and their interactions, on litter decomposition and the activity and diversity of associated microorganisms. The use of litter from within (native) and outwith (standard) the experimental plots also enabled us to test whether decomposition and microbial functional diversity is driven primarily by soil conditions or litter chemistry. In general, extracellular enzyme activities of litter were driven by additions of simulated N deposition with phosphatase being the most responsive. We found that standard litter incubated in plots that had been burnt 8 years previously decomposed slower and lost less N and phosphorus than in unburnt plots. This material also had associated with it the greatest activity of glucosidase and the least diverse microbial community, as assessed by culture‐independent methods. Although all treatments significantly affected microbial diversity, burning explained most of the variability, indicating a close coupling between plant and microbial communities in these treatments. A striking feature of all the data relating to both standard and native litter was an almost complete lack of interactive effects between the treatments. The lack of interactions between the treatments indicates that each perturbation might affect different mechanisms in the decomposition process (including the composition of associated microbial communities) and nutrient cycling.
Keywords:carbon turnover  climate change  enzyme activities  microbial diversity  soil bacteria  soil fungi  soil microorganisms
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号