首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Damped oscillations in the adaptive response of the iron homeostasis network of E. coli
Authors:Amnon Amir  Shiri Meshner  Tsevi Beatus  Joel Stavans
Institution:1. Departments of Physics of Complex Systems and;2. Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel.
Abstract:Living organisms often have to adapt to sudden environmental changes and reach homeostasis. To achieve adaptation, cells deploy motifs such as feedback in their genetic networks, endowing the cellular response with desirable properties. We studied the iron homeostasis network of E. coli, which employs feedback loops to regulate iron usage and uptake, while maintaining intracellular iron at non‐toxic levels. Using fluorescence reporters for iron‐dependent promoters in bulk and microfluidics‐based, single‐cell experiments, we show that E. coli cells exhibit damped oscillations in gene expression, following sudden reductions in external iron levels. The oscillations, lasting for several generations, are independent of position along the cell cycle. Experiments with mutants in network components demonstrate the involvement of iron uptake in the oscillations. Our findings suggest that the response is driven by intracellular iron oscillations large enough to induce nearly full network activation/deactivation. We propose a mathematical model based on a negative feedback loop closed by rapid iron uptake, and including iron usage and storage, which captures the main features of the observed behaviour. Taken together, our results shed light on the control of iron metabolism in bacteria and suggest that the oscillations represent a compromise between the requirements of stability and speed of response.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号