首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phylogenetically structured variance in felid bite force: the role of phylogeny in the evolution of biting performance
Authors:M SAKAMOTO  G T LLOYD  M J BENTON
Institution:1. Department of Earth Sciences, University of Bristol, Bristol, UK;2. Department of Palaeontology, The Natural History Museum, Cromwell Road, London, UK
Abstract:A key question in evolution is the degree to which morphofunctional complexes are constrained by phylogeny. We investigated the role of phylogeny in the evolution of biting performance, quantified as bite forces, using phylogenetic eigenvector regression. Results indicate that there are strong phylogenetic signals in both absolute and size‐adjusted bite forces, although it is weaker in the latter. This indicates that elimination of size influences reduces the level of phylogenetic inertia and that the majority of the phylogenetic constraint is a result of size. Tracing the evolution of bite force through phylogeny by character optimization also supports this notion, in that relative bite force is randomly distributed across phylogeny whereas absolute bite force diverges according to clade. The nonphylogenetically structured variance in bite force could not be sufficiently explained by species‐unique morphology or by ecology. This study demonstrates the difficulties in identifying causes of nonphylogenetically structured variance in morphofunctional character complexes.
Keywords:ancestor reconstructions  bite force  biting performance  feeding function  Felidae  phylogenetic comparative method  phylogenetic eigenvector regression  phylogenetic signal  variance partitioning
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号